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Abstract

This study focuses on an application of the Orthogonal
Matching Pursuit (OMP) technique for interpolation
and denoising of seismic signals.OMP is an algorithm
for sparse coding based on orthogonal projections
of the signal over an overcomplete dictionary. This
overcomplete dictionary was designed with K-times
Singular Values Decomposition (K-SVD). Developed
algorithms were applied to VSP seismic data and
results achieved, in restored lost traces and denoised
signals, are presented.

Introduction

Many techniques have being proposed for improving signal
quality through interpolation and noise reduction, most of
them are classified into three main categories: methods
based on physical wave propagation modeling, predictive
modeling based on the linearity of seismic events and
domain-transform methods based on the simplicity of the
sparsity of seismic data in an auxiliary domain.

Domain-transform methods for interpolation and denoising
of seismic data are generally processed using the following
transform-domain: Curvelet, Pocs and Dreamlet; in
addition to this, learning dictionaries for noise reduction
were reported in (Rubinstein et al. (2008), Zhu et al. (2015)
y Chen et al. (2016)). In a previous work Beckouche
designed a learning dictionary that only made use of one
datum, Beckouche and Ma (2014). However, despite
of being a learning dictionary statistical processes need
more than one datum for extracting important and accurate
information from signals.

The purpose of this study is to examine a sparse
representation technique for denoising and interpolation of
seismic VSP data. In this study sparse representation uses
the OMP algorithm and a dictionary trained with a 29 VSP
data set for denoising seismic signals. After the signal
is being denoised, the interpolation process takes place:
it recognizes the array of training set by using adjacent
traces. We presented good results for this study with
synthetic traces generated by an attenuation model, as well
as for real VSP seismic data.

Sparse Representation

Sparse representation using overcomplete dictionaries
has been satisfactorily implemented in medical imaging,
seismic and audio applications. Basically its principle
consists of representing a signal with a linear combination
of only a few atoms previously specified.

The signal is denoted by a vector x ∈ ℜn and it can be
represented in other domains by linear transformations
using a dictionary denoted by a matrix D ∈ ℜnxn with
coefficients a ∈ℜn.

x = Da (1)

Sparse representation can be accomplished through
diverse techniques such as OMP, basis pursuit, FOCUSS
and many others. In this work we use OMP and KSVD
for the learning dictionary. When sparse representation is
used for denoising it is assumed that the desired signal
can be restored by using only a small number of atoms
in the dictionary and then by taking each datum and
transforming it to another domain. In addition to this, the
denoising process is possible using OMP because sparse
representation causes thresholding.

Orthogonal Matching Pursuit Algorithm

In each step the greedy OMP algorithm selects the atom
with the highest correlation with respects the current
residual. The OMP algorithm gives an approximate
solution to equation 1 providing a solution to one of the
following problems:

a) Sparsity-constrained coding problem, given by:

a = argmin||x−Da||22 subject to ||a||0 ≤ K (2)

b) The error-constrained sparse coding problem, given by

a = argmin||a||0 subject to ||x−Da||22 ≤ ε. (3)

The OMP algorithm can be stated as follows: Firstly
initialize the residual r = x, then select in each step
the atom Di with the highest correlation followed by a
comparison to the current residual. Once the atom Di is
selected, the signal is orthogonally projected to the span
of the selected atoms, the residual is recomputed, and the
process repeats from the beginning (see Algorithm 1). The
reader is encouraged to note that in line 5 it is presented
the greedy selection step, and in line 6 it is shown is the
orthogonalization step. Aharon et al. (2006) and Rubinstein
et al. (2008).
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Algorithm 1 OMP
1: Input Dictionary D, Signal x, Sparsity K o error ε

2: Output Sparse coding a subject to x≈ Da
3: r← x
4: while stop criterion do
5: i = max

∣∣DT r
∣∣

6: ai = (Di)
+x

7: r = x−Diai
8: end while

K-SVD

Sparse representation intrinsically implies that the signal
can be reconstructed by using only a few number of
atoms from a dictionary. This sparse coding can be easily
obtained by designing a dictionary from a training data
set. The learning dictionary shows a local structure from
seismic data and a sparse coding with a fixed dictionary. A
fundamental question in the above formulation is choosing
an appropriate dictionary; for this purpose, a K- SVD
algorithm is executed in order to design such a dictionary.

The K-SVD algorithm requests for an initial dictionary
D0, iterations k and a data set arranged in an array X.
This algorithm searches for a good dictionary that best
reproduces the signals X, this problem is formulated as
follows:

min
D
||X−DA||2F Subject to ∀i ||Ai||0 ≤ K (4)

The K-SVD algorithm initially calculates coefficients for
sparse representation in a matrix A followed by an update
of the atoms in the dictionary (see algorithm 2). In line
5 K-SVD uses OMP for sparse coding and the dictionary
update is performed one atom at a time, thus optimizing
the target function for each atom individually while keeping
the rest fixed, Aharon et al. (2006) and Rubinstein et al.
(2008).

Letting I denote the indices of the signals in X which use
the j-th atom, the update is obtained by optimizing the
target function

||Xi−DAi||2F (5)

over both the atom and its related coefficients in row Ai
. The resulting problem is a simple rank-1 approximation
task given by

{D,g}= min
D,g
||E−DT ||2F Subject to ||D||2 = 1 (6)

Where E=Xi−∑i 6= j DiAi, j is the error matrix without the j-th
atom, Di is the updated atom and gT is the new coefficient
in row Ai. This problem can be solved directly via an SVD
decomposition of the matrix E jXT

j = UΛV T , the update of
the orthonormal base is given by D j =U .

Synthetic and real data examples

The Learning Dictionary

The set of training data for designing the dictionary is
composed of 29 checkshot VSP datasets. The matrix of

Algorithm 2 K-SVD
1: Input Initial dictionary D0, Signals X, Number of

coefficients K o error ε, iteration number k
2: Output Dictionary D, Sparse coding A subject to

X≈ DA
3: D← D0
4: for n = 1...k do
5: Ai = min

A
||xi−Dγ||22 Subject to ||γ||0 ≤ K

6: for j = 1...L do
7: D j = 0
8: i = indices of signals in X sparse coefficient D j
9: E = Xi−DAi

10: {d,g}= min
d,g
||E−DigT ||2F

11: D j = d
12: A j,i = gT

13: end for
14: end for

training signals X is a non-overlapping array containing
samples of size 100. In order to build an initial dictionary
of 160 atoms; it is used random samples of the training
data. The dictionary shown in Figure 1 was trained with the
following parameters: k = 15 iterations and K = 5 number
of coefficients for OMP sparse coding.

Figure 1: Dictionary of 160 atoms.

Denoising Synthetic VSP Data

Synthetic data was modelled with a visco-acoustic
attenuation model, the source was modelled using a Ricker
wavelet 25 Hz dominant frequency, a quality factor of 50,
and a wave velocity of 2000 m/s, geophones were placed in
separate locations. Signals were contaminated by additive
gaussian noise with a SNR of 5 dB. For noise reduction
was implemented an OMP algorithm with an overlapped
window of 100 ms and one sample shifted at a time.
Additionally, five coefficients were used for signal denoising
in sparse coding OMP. The Figure 2 shows the seismic
traces before and after being denoised. Synthetic traces
were contaminated by white noise with Signal-to-noise ratio
from 5 dB to 16 dB after the denoising process.

The Figure 3 shows the seismic trace 1 from the synthetic
data before and after being denoised by using the algorithm
proposed. The spectrum analysis shows that the signal
content of the trace is preserved and noise in low and high
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RÓMULO SANDOVAL, JOSÉ L. PAREDES, F. A. VIVAS. 3

Figure 2: (Up) Synthetic traces contaminated with white
noise. (Down) Synthetic traces after the denoising process.

frequencies are attenuated.

Figure 3: (Up) Original and denoised synthetic trace.
(Down) Original and denoised spectrum of the trace.

Interpolation and Denoising of Real Seismic VSP Data

Lost traces, in general, are interpolated using adjacent
traces; for this purpose, it was executed the sparse coding
process with the OMP algorithm. In the algorithm a patch
of data (size 10 x 10) arranged in columns was taken for
interpolating adjacent traces as it is depicted in Figure 4.

Figure 4: Patch of trained and denoised data using the
OMP algorithm. The colors in the patch shows the
arrangement of the matrix in columns.

In this experiment lost traces were simulated by removing
ten random traces from original data as shown in
Figure 5. Results for denoising and interpolation are
shown in Figure 6, the wavelet spectrum were recovered
in the interpolation process without noise frequencies
components, attenuation in amplitude is relative to the
original.

Conclusions

The main contribution to this work is the implementation
of an algorithm for an interpolation and denoising
process of VSP seismic data. In this work was also
demonstrated that it was possible to accurately recover
seismic synthetic signals contaminated by noise with a low
signal to noise ratio by eliminating high frequencies through
overlapping windows with only a few coefficients from its
representation. An asset to this techniques relies on the
fact that interpolation preserves the shape of the signal
despite modifying signals relative magnitude. In addition to
this the technique can also be applied to seismic reflection
data. In a future work this technique will be compared to the
conventional process used in seismic processing industrial
applications.
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Original and denoised spectrum of trace.

Chen, Y., Ma, J., and Fomel, S., Marzo-abril 2016,
Double-sparsity dictionary for seismic noise attenuation:
Geophysics, 81, no. 2, V103–V116.

Rubinstein, R., Zibulevsky, M., and Elad, M., 2008,

Efficient implementation of the k-svd algorithm using
batch orthogonal matching pursuit: Thecnical report.

Zhu, L., Liu, E., and McClellan, J. H., 2015, Seismic data
denoising through multiscale and sparsity-promoting
dictionary learning: Geophysics, 80, no. 6.

fiftieth International Congress of The Brazilian Geophysical Society


